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•                     ,      Nucleon matrix elements of local operators 

Moments of Structure Functions
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Moments of Structure Functions

2
∫ 1

0
dxxn−1F1(x, Q2) −→ 〈xn〉q

2
∫ 1

0
dxxng1(x, Q2) −→ 〈xn〉∆q

• 〈xn〉q, 〈xn〉∆q −→ nucleon matrix elements of local operators O.

〈P, S|O|P, S〉

20

Unpolarized (F1/F2):

Oq
{µ1µ2···µn} = q

[(
i

2

)n−1
γµ1

↔
Dµ2 · · ·

↔
Dµn −trace

]

q

Polarized (g1/g2):

Oq
{µ1µ2···µn} = q

[(
i

2

)n−1
γ5γµ1

↔
Dµ2 · · ·

↔
Dµn −trace

]

q

• Broken Lorentz symmetry =⇒

higher moment operators mix with lower dimensional op-
erators. Operators belonging in irreducible representations
of O(4) transform reducibly under the lattice Hyper-cubic
group.

On the lattice we can measure: 〈x〉q, 〈x2〉q, 〈x3〉q
〈1〉∆q (gA), 〈x〉∆q, 〈x2〉∆q
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2

∫ 1

0

dxxng2(x, Q2) −→ 〈xn〉∆q, dn

dn



Transversity

• RHIC spin program

∫ 1

0

dxxnh1(x, Q2) −→ 〈xn〉δq

Transversity (h1):

〈P, S|Oσq
ρν{µ1µ2···µn}|P, S〉 =

2

mN
〈xn〉δq[(SρPν−SνPρ)Pµ1Pµ2···Pµn+···−traces]

Oσq
ρνµ1µ2···µn = q[

(
i

2

)n
γ5σρν

↔
Dµ1 · · ·

↔
Dµn −traces]q

On the lattice we can measure: 〈1〉δq and 〈x〉δq.

• Only 〈1〉δq can be measured with &P = 0
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GPDs and Form Factors

〈P ′|O{µ1µ2...µn}
q |P 〉

∼
∫

dxxn−1[H(x, ξ, t), E(x, ξ, t)]

→ Ani(t), Bni(t), Cn(t)

Deeply virtual Compton scattering: 

Euclidean Matrix elements: 



Lattice problems

Lattice Operators

Unpolarized (F1/F2):

1

2

∑

s
〈P, S|Oq

{µ1µ2···µn}|P, S〉 = 2〈xn−1〉q(µ)[Pµ1Pµ2 · · · Pµn + · · ·− trace]

Oq
µ1µ2···µn = q

[(
i

2

)n−1
γµ1

↔
Dµ2 · · ·

↔
Dµn −trace

]

q

On the lattice we can measure: 〈x〉q, 〈x2〉q and 〈x3〉q

• Broken Lorentz symmetry =⇒

higher moment operators mix with lower dimensional op-
erators. Operators belonging in irreducible representations
of O(4) transform reducibly under the lattice Hyper-cubic
group.

• Only 〈x〉q can be measured with "P = 0

7

Continuum/Chiral extrapolation

• Continuum extrapolation (a→ 0).
improved Wilson fermions: reduce or eliminate O(a) errors

domain wall fermions have O(a2)

• Chiral extrapolation (mq → 0).
Chiral perturbation theory

Applicable at a = 0 for Wilson or KS fermions
There exists modified χPT for a "= 0

Regular χPT at a "= 0 for domain wall fermions
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Lattice SF calculations

• QCDSF [Phys.Rev.D53 ‘96, Phys.Rev.D63 ‘01, hep-ph/0304249]

- Structure Functions/Generalized PD and Form Factors

- Wilson Fermions and Wilson/Clover

- Quenched and Dynamical (with UKQCD)

- Starting chiral fermions

•  LHPC-SESAM [hep-lat/0201021, hep-lat/0312014]

- Structure Functions/Generalized PD and Form Factors

- Wilson Fermions

- Quenched and Dynamical

- Now doing DWF with dynamical Kogut-Susskind

• RBC [hep-lat/0209137, hep-lat/0309113] 

- Structure Functions and Form Factors

- First to use Domain Wall Fermions 

* Reduced discretization  errors 

* Can work close to the chiral limit

- Quenched and Dynamical



Summary 

• Review work done with RBC

• Show some results from LHPC



Domain Wall Fermions for QCD

Formulate the 5D Wilson fermions with mass M != 0 in s ε [1, Ls]

1 2 Ls/2 Ls... ...

q(R)

For −2 < M < 0, light chiral modes are bound on the walls.
Only one Dirac fermion without doublers remains.

1 2 Ls/2 Ls... ...

mf

q(R) Fermion mass is introduced by
explicitly coupling mf of the
walls. [Shamir,Furman & Shamir]
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Why Domain Wall Fermions 
• Excellent chiral properties                                                          

at finite lattice spacing:

• Ls → ∞ Exact chiral symmetry

• Ls finite: Exponentially small chiral symmetry 

breaking

• Gauge action affects chiral symmetry                             
[KO with RBC hep-lat/0211023]

• Chiral extrapolations

• Simpler renormalization due to symmetry

• Can work close to the chiral limit

• Have O(a2) errors

• Excellent scaling properties
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Axial Charge gA

Horsley LAT02



Finite Volume Effect

• Volumes: 1.1fm - 2.4fm

Finite volume effect for gA

Previous RBC study:
[Blum,Ohta,Sasaki] 1.6fm box

New RBC study:
2.4fm and 1.2fm box

Clear finite volume effect

For dwf:

ZA = ZV = 1/gV

30

[ Blum Ohta KO Sasaki ‘03 ]



• Finite volume effect

• Experimental value: 1.2695(29) 

• Quenched DWF:  1.212(24)stat (27)norm (linear fit)

• New dynamical result on the way (2 flavor and 2+1) [Blum, Lin, Sasaki, .... ]

[Blum KO Ohta Sasaki]

Nucleon Axial Charge

2 flavor DWF



LHPC-SESAM:
diamonds - quenched,
squares - dynamical

QCDSF:
quenched - triangles

[hep-lat/0201021]

〈x〉u−d ∼ a1

[
1−

(3g2
A + 1)m2

π

(4πfπ)2
ln

( m2
π

m2
π + µ2

)]
+b1m

2
π.

Where µ = 550MeV

The log coefficient is valid for full QCD

[Detmold et.al. Phys.Rev.D87 2001]
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RBC calculation

• Unrenormalized

• No curvature

• Use NPR for renormalization

FIG. 6: The bare flavor non-singlet momentum fraction.
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FIG. 8: The bare flavor non-singlet helicity distribution.
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Renormalization

〈N |O|N〉ren(µ) = ZO(aµ)〈N |O|N〉lat(a)

ZO(aµ) can be computed:

• Perturbatively in MS

• Non-perturbatively (ex. RI/MOM), perturbative matching to MS

Lattice complications:

Broken symmetries (ex. Lorentz, chiral symmetry) =⇒ operator mixing

NPR needed when mixing with lower dimensional operators occurs.
... domain wall fermions

16



In Landau gauge we compute off-shell matrix elements of the O.

P
P

TrVO(p2)Γ
∣∣∣
p2=µ2

ZO
Zq

= 1

• VO(p2) the amputated vertex
• Γ a projector

This defines the MOM scheme. Extrapolate to mf → 0 and we have
the RI scheme.

Zrgi =
Z(µ2)

C(µ2)

• C(µ2) the operator running (in continuum PT)
• Zrgi scale invariant if

ΛQCD " µ2 " a−1

• Requires perturbative matching to MS

Introduced by Martinelli et.al. Nuc.Phys.B445 81 (1995)
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Renormalization factors

• Chiral Symmetry implies equality
FIG. 13: Renormalization constant for the momentum fraction. The diamonds are the renormal-

ization group invariant points. The octagons are the raw data.

38

FIG. 14: Renormalization constant for the helicity distribution. The diamonds are the renormal-

ization group invariant points. The octagons are the raw data.
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Ratio of first moments
(polarized and unpolarized)

• No curvature observed down to 400MeV pions     (Quenched)

• Renormalization constant cancels in the ratio for DWF

• Ratio agrees with experimental expectations

[Blum KO Ohta ‘05]



Chiral Log

Individual matrix element: large variation

Ratio: small variation



The g2 structure function

2
∫ 1

0
dxxng2(x, Q2) =

1

2

n

n + 1

∑

q=u,d

[eq
2,n(µ

2/Q2, g(µ))dq
n(µ)−2eq

1,n(µ
2/Q2, g(µ))〈xn〉∆q(µ)],

〈xn〉∆q(µ) → Twist 2

dq
n(µ) → Twist 3

dq
n(µ) estimations:

• Negligible =⇒ Wandzura - Wilczek relation of g1 and g2

• Need not be small in a confining theory [Jaffe and Ji Phys.Rev.D43,91].
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Twist Three

〈P, S|O[5]q
[σ{µ1]µ2···µn}|P, S〉 =

1

n + 1
dq
n(µ)[(SσPµ1−Sµ1Pσ)Pµ2···Pµn+···−traces]

O[5]q
[σµ1]µ2···µn

= q
[(

i

2

)n
γ5γ[σ

↔
Dµ1] · · ·

↔
Dµn −traces

]
q

Measure:

O[5]q
34 =

1

4
qγ5

[
γ3

↔
D4 −γ4

↔
D3

]
q → dq

1

• Hyper-cubic group representation: 6+
1

• Momentum: #P = 0

• Renormalization: Multiplicative (DWF Chiral symmetry)

chiral symmetry breaking causes mixing with

Oσq
34 = qγ5σ34q

32



Note:

• Unrenormalized
• Disagreement with

the Wilson results
Power divergent mixing

[LHPC-SESAM: hep-lat/0201021]
• Small at chiral limit

plateaus

33

[Blum KO Ohta ‘05]



• Linear extrapolation: 1.193(30) at 2GeV MS

Transversity

FIG. 12: The bare flavor non-singlet transversity.
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FIG. 15: Renormalization constant for the transversity. The diamonds are the renormalization

group invariant points. The octagons are the raw data.

40

[Blum KO Ohta ‘05]



LHPC collaborators (SF project)

• R. Edwards (Jlab)

• G. Fleming (Yale)

• P. Hagler (Vrije Universiteit)

• J. Negele (MIT)

• A. Pochinsky (MIT)

• D. Renner (UofA)

• D. Richards (Jlab)

• W. Schroers (DESY)



• Domain wall fermions for valence (with hyp smeared links)
• Chiral symmetry (O(a2) errors better scaling)
• Ward Identities (renormalization, power divergent mixing)

• Kogut-Susskind 2+1 Dynamical flavors 

• Improved KS action (Asqtad: O(a4, g2a2))  [KO, Sugar, Toussaint ‘99]

• MILC has generated lattices: Ready to milk the MILC

• Light quark masses:  Lightest pion         mπ ~ 250MeV

• Volumes: 2.6 to 3.2 fm

• Future:  Continuum extrapolation
• MILC lattice spacings: a=0.125fm, 0.09fm
• a=0.06fm in 1 - 2 years

The hybrid action program



Chiral symmetry breaking

• The size of                  measures chiral symmetry breaking

• Let’s use for the operator 

• Assume at long distances 

• The proportionality constant is the residual mass

∆µ〈Aa
µ(x)O〉 = 2 mf 〈Ja

5(x)O〉+ 2〈Ja
5q(x)O〉+ i〈δa

xO〉

Aa
µ(x) : Axial Current

Ja
5(x) = q̄(x)τaγ5q(x) : Pseudo-scalar density

Ja
5q(x) = −ψ(x,

Ls

2
)τaPLψ(x,

Ls

2
+ 1)

+ ψ(x,
Ls

2
+ 1)τaPRψ(x,

Ls

2
).

lim
Ls→∞

〈Ja
5q(x)O〉 = 0

• Ls →∞ : Exact chiral symmetry at finite lattice spacing.

• Finite Ls: Exponentially suppressed breaking [Furman & Shamir Nucl.Phys.

B439 (1995)]

• Flavor singlet case: 〈J5q(x)O〉 reproduces the anomaly.

∆µ〈Aa
µ(x)O〉 = 2 mf 〈Ja

5(x)O〉+ 2〈Ja
5q(x)O〉+ i〈δa

xO〉

Aa
µ(x) : Axial Current

Ja
5(x) = q̄(x)τaγ5q(x) : Pseudo-scalar density

Ja
5q(x) = −ψ(x,

Ls

2
)τaPLψ(x,

Ls

2
+ 1) + ψ(x,

Ls

2
+ 1)τaPRψ(x,

Ls

2
)

Ja
5q(x) = q̄mp(x)τaγ5qmp(x)

lim
Ls→∞

〈Ja
5q(x)O〉 = 0

• Ls →∞ : Exact chiral symmetry at finite lattice spacing.

• Finite Ls: Exponentially suppressed breaking [Furman & Shamir Nucl.Phys.

B439 (1995)]

• Flavor singlet case: 〈J5q(x)O〉 reproduces the anomaly.

V
5
4
5d

O = Ja
5(0)

V
5
4
5d

O = Ja
5(0)

Ja
5q ∼ Ja

5

V
5
4
5d

O = Ja
5(0)

Ja
5q ∼ Ja

5

Mres =

∑
x,y〈Ja

5q(y, t)Ja
5(x,0)〉

∑
x,y〈Ja

5(y, t)Ja
5(x,0)〉

∣∣∣∣∣
t≥tmin

. (19)



Residual Mass vs Ls
Re

sid
ua

l M
as

s

a=0.125fm

At Ls = 16:
1MeV < mres <2.5MeV 



Residual Mass vs Ls
Re

sid
ua

l M
as

s

a=0.09fm

At Ls = 12:
0.2MeV<mres <0.7MeV 



The  4D effective operator

• Overlap:   α=2, a5=0  (Borici)

• DWF:        α=1, a5=1  (Shamir)

The DWF transfer Matrix (a la Edwards and Heller)

K. Orginos
(Dated: November 3, 2004)

I. DOMAIN WALL FERMIONS: THE TRANSFER MATRIX

The generalized domain wall fermion action is:

SDW = −Ψ̄D(5)
DW Ψ = −

∑

x,x′

Ls−1∑

s=0

[
Ψ̄(x, s) [b5Dw(x, x′) + 1]Ψ(x′, s)

]
+

+
[
Ψ̄(x, s) [c5Dw(x, x′)− 1]P−Ψ(x′, s + 1) + Ψ̄(x, s) [c5Dw(x, x′)− 1]P+Ψ(x′, s− 1)

]
−

− mf

[
Ψ̄(x, 0) [c5Dw(x, x′)− 1]P+Ψ(x′, Ls − 1) + Ψ̄(x, Ls − 1) [c5Dw(x, x′)− 1]P−Ψ(x′, 0)

]
(1)

where

P+ =
1 + γ5

2

P− =
1− γ5

2
(2)

and Dw is the Wilson fermion matrix.
When c5 = 0 and b5 = a5 we have the Shamir domain wall fermions. When c5 = b5 = a5 we have the Borici domain

wall fermions. When b5 − c5 = a5 and b5 + c5 = κa5 we have the Neff fermions.
In matrix notation we can write:

D(5)
dwf =





D+ −D− P− 0 · · · 0 m D− P+

−D− P+ D+ −D− P− 0 · · · 0
0 −D− P+ D+ −D− P− 0 · · ·
...

...
m D− P− 0 · · · · · · −D− P+ D+




(3)

where

D+ = 1 + b5Dw

D− = 1− c5Dw (4)

We will transform from the Ψ̄ and Ψ variables to the χ̄ and χ in such a way that χ(0) is the q field (see axial current
and hermiticity notes) and χ̄(0) is the q̄ field [2]. In order to achieve this transformation we define the following
operators:

Pss′ = δss′P− + δs′,(s+1) mod Ls
P+ (5)

P−1
ss′ = δss′P− + δs′,(s−1) mod Ls

P+ (6)

and the reflection operator

Rss′ = δs′,Ls−1−s (7)

All s-indices run from 0 to Ls − 1. In matrix notation:

P =





P− P+ · · · 0
0 P− P+ · · · 0
...

...
. . .

...
0 0 · · · P+

P+ 0 · · · P−




(8)

P−1 =





P− 0 · · · P+

P+ P− · · · 0
...

. . . . . .
...

0 0 P+ P−




(9)

3

or

D(5)
DWP =





γ5Q− (P− −m P+) γ5Q+ · · · 0

0 γ5Q− γ5Q+

...
...

...
. . . . . .

γ5Q+ (P+ −m P−) 0 · · · γ5Q−




(25)

and

D(5)
DWP =





γ5Q−M− γ5Q+ · · · 0

0 γ5Q− γ5Q+

...
...

...
. . . . . .

γ5Q+M+ 0 · · · γ5Q−




(26)

with

M− = P− −m P+ (27)
M+ = P+ −m P− (28)

Note M−M+ = −m. Now if we define

T−1 = −Q−1
− Q+ (29)

we get

D(5)
DWP = γ5Q−





M− −T−1 · · · 0

0 1 −T−1
...

...
...

. . . . . .
−T−1 M+ 0 · · · 1




= γ5Q−UD5L (30)

with

D5 =





M− − T−LsM+ 0 · · · 0

0 1 0
...

...
...

. . . . . .
0 0 · · · 1




(31)

L =





1 0 0 · · · 0
−T−Ls+1M+ 1 0 0 · · ·

−T−Ls+2M+ 0 1
. . .

...
...

...
. . . . . . 0

−T−1M+ 0 · · · 0 1




(32)

U =





1 −T−1 · · · 0

0 1 −T−1
...

...
...

. . . . . .
0 0 · · · 1




(33)

In closed form

[D5]ss′ = δss′

[
δs0(M− − T−LsM+) + 1− δs0

]
(34)

Lss′ = δss′ − δs0T
−Ls+s(δ0s′ − 1) (35)

Uss′ = δss′ − T−1δs′, s+1 (36)
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...
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. . . . . .
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we get

D(5)
DWP = γ5Q−





M− −T−1 · · · 0

0 1 −T−1
...

...
...

. . . . . .
−T−1 M+ 0 · · · 1




= γ5Q−UD5L (30)

with

D5 =





M− − T−LsM+ 0 · · · 0

0 1 0
...

...
...

. . . . . .
0 0 · · · 1




(31)

L =





1 0 0 · · · 0
−T−Ls+1M+ 1 0 0 · · ·

−T−Ls+2M+ 0 1
. . .

...
...

...
. . . . . . 0

−T−1M+ 0 · · · 0 1




(32)

U =





1 −T−1 · · · 0

0 1 −T−1
...

...
...

. . . . . .
0 0 · · · 1




(33)

In closed form

[D5]ss′ = δss′

[
δs0(M− − T−LsM+) + 1− δs0

]
(34)

Lss′ = δss′ − δs0T
−Ls+s(δ0s′ − 1) (35)

Uss′ = δss′ − T−1δs′, s+1 (36)
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A. The transfer Matrix

The transfer matrix T was defined as:

T−1 = −Q−1
− Q+ (59)

Q+ = γ5

[
D+ P+ −D− P−

]
=

= γ5

[
P+ + b5DwP+ − P− + c5DwP−

]
=

= P+ + P− + b5HwP+ + c5HwP− = 1 + b5HwP+ + c5HwP+ − c5HwP+ + c5HwP− ⇒
Q+ = 1 + c5Hw + (b5 − c5)HwP+ (60)

with Hw = γ5Dw. Similarly

Q− = γ5

[
D+ P− −D− P+

]
=

= γ5

[
P− + b5DwP− − P+ + c5DwP+

]
=

= −P+ − P− + b5HwP− + c5HwP+ = −1 + b5HwP− + c5HwP− − c5HwP− + c5HwP+ ⇒
Q− = −1 + c5Hw + (b5 − c5)HwP− (61)

or

Q± = c5Hw ± 1 + (b5 − c5)HwP± (62)

So

T−1 = −Q−1
− Q+ =

=
1

1− c5Hw − (b5 − c5)HwP−

[
1 + c5Hw + (b5 − c5)HwP+

]
=

1 + HT

1−HT
⇒

[
1 + c5Hw + (b5 − c5)HwP+

][
1−HT

]
=

[
1− c5Hw − (b5 − c5)HwP−

][
1 + HT

]
⇒

2c5Hw + (b5 − c5)Hw =
[
2 + (b5 − c5)Hw(P+ − P−)

]
HT ⇒

HT =
1

2 + (b5 − c5)Hwγ5
(b5 + c5)Hw (63)

or

HT = (b5 + c5)γ5
Dw

2 + (b5 − c5)Dw
(64)

If we define α = b5 + c5 and a5 = b5 − c5 we get the transfer matrix to be

HT = α
1

2 + a5Hwγ5
Hw (65)

II. SOME FORMULAS

D = (b5 + c5)
Dw

2 + (b5 − c5)Dw
= α

Dw

2 + a5Dw
(66)

HT = γ5D (67)

T−1 =
1 + HT

1−HT
(68)

[1] R. G. Edwards and U. M. Heller, Phys. Rev. D63, 094505 (2001), arXiv:hep-lat/0005002.
[2] The 0 index refers to the s index of the 5th dimension
[3] see axial current and hermiticity notes
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T−1 = −Q−1
− Q+ (59)

Q+ = γ5

[
D+ P+ −D− P−

]
=

= γ5

[
P+ + b5DwP+ − P− + c5DwP−

]
=

= P+ + P− + b5HwP+ + c5HwP− = 1 + b5HwP+ + c5HwP+ − c5HwP+ + c5HwP− ⇒
Q+ = 1 + c5Hw + (b5 − c5)HwP+ (60)

with Hw = γ5Dw. Similarly

Q− = γ5

[
D+ P− −D− P+

]
=

= γ5

[
P− + b5DwP− − P+ + c5DwP+

]
=

= −P+ − P− + b5HwP− + c5HwP+ = −1 + b5HwP− + c5HwP− − c5HwP− + c5HwP+ ⇒
Q− = −1 + c5Hw + (b5 − c5)HwP− (61)

or

Q± = c5Hw ± 1 + (b5 − c5)HwP± (62)

So

T−1 = −Q−1
− Q+ =

=
1

1− c5Hw − (b5 − c5)HwP−

[
1 + c5Hw + (b5 − c5)HwP+

]
=

1 + HT

1−HT
⇒

[
1 + c5Hw + (b5 − c5)HwP+

][
1−HT

]
=

[
1− c5Hw − (b5 − c5)HwP−

][
1 + HT

]
⇒

2c5Hw + (b5 − c5)Hw =
[
2 + (b5 − c5)Hw(P+ − P−)

]
HT ⇒

HT =
1

2 + (b5 − c5)Hwγ5
(b5 + c5)Hw (63)

or

HT = (b5 + c5)γ5
Dw

2 + (b5 − c5)Dw
(64)

If we define α = b5 + c5 and a5 = b5 − c5 we get the transfer matrix to be

HT = α
1

2 + a5Hwγ5
Hw (65)

II. SOME FORMULAS

D = (b5 + c5)
Dw

2 + (b5 − c5)Dw
= α

Dw

2 + a5Dw
(66)

HT = γ5D (67)

T−1 =
1 + HT

1−HT
(68)

[1] R. G. Edwards and U. M. Heller, Phys. Rev. D63, 094505 (2001), arXiv:hep-lat/0005002.
[2] The 0 index refers to the s index of the 5th dimension
[3] see axial current and hermiticity notes
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With a little algebra we get
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P−1 1
Ddwf (1)

Ddwf (m)P = L−1(1)diag(Dov(m), 1, · · · , 1)L(m) (69)

or

P−1 1
Ddwf (1)

Ddwf (m)P =





Dov(m) 0 0 · · · · · · · · · 0
−(1−m)T−Ls/2+1 1

T−Ls/2+T Ls/2 1 0 0 · · · · · · 0
−(1−m)T−Ls/2+2 1

T−Ls/2+T Ls/2 0 1 0 · · · · · · 0
...

...
. . . . . . . . . · · ·

...
−(1−m) 1

T−Ls/2+T Ls/2 0 · · · · · · 1 0 · · ·
...

...
. . . . . . . . . . . .

...
−(1−m)TLs/2−1 1

T−Ls/2+T Ls/2 0 · · · · · · · · · 0 1





(70)

P−1 1
Ddwf (m)

Ddwf (1)P = L−1(m)diag(Dov(m), 1, · · · , 1)L(1) (71)

P−1 1
Ddwf (m)

Ddwf (1)P =





D−1
ov (m) 0 0 · · · · · · · · · 0

(1−m)T−Ls/2+1 1
T−Ls/2+T Ls/2 D−1

ov (m) 1 0 0 · · · · · · 0
(1−m)T−Ls/2+2 1

T−Ls/2+T Ls/2 D−1
ov (m) 0 1 0 · · · · · · 0

...
...

. . . . . . . . . · · ·
...

(1−m) 1
T−Ls/2+T Ls/2 D−1

ov (m) 0 · · · · · · 1 0 · · ·
...

...
. . . . . . . . . . . .

...
(1−m)TLs/2−1 1

T−Ls/2+T Ls/2 D−1
ov (m) 0 · · · · · · · · · 0 1





(72)

[1] R. G. Edwards and U. M. Heller, Phys. Rev. D63, 094505 (2001), arXiv:hep-lat/0005002.
[2] The 0 index refers to the s index of the 5th dimension
[3] see axial current and hermiticity notes

γ5 D + D γ5 = 2 D γ5 D

δΨ = γ5(1− 2D)Ψ

δΨ̄ = Ψ̄γ5

γ5 D + D γ5 = γ5 +
1

2
ε[γ5D(M5)] +

1

2
γ5ε[γ5D(M5)γ5] = 2 D γ5 D

Dov(m) =
1 + m

2
+

1−m

2
γ5εLs[γ5D(M5)] (12)

7

P−1 1
Ddwf (1)

Ddwf (m)P = L−1(1)diag(Dov(m), 1, · · · , 1)L(m) (69)

or

P−1 1
Ddwf (1)

Ddwf (m)P =





Dov(m) 0 0 · · · · · · · · · 0
−(1−m)T−Ls/2+1 1

T−Ls/2+T Ls/2 1 0 0 · · · · · · 0
−(1−m)T−Ls/2+2 1

T−Ls/2+T Ls/2 0 1 0 · · · · · · 0
...

...
. . . . . . . . . · · ·

...
−(1−m) 1

T−Ls/2+T Ls/2 0 · · · · · · 1 0 · · ·
...

...
. . . . . . . . . . . .

...
−(1−m)TLs/2−1 1

T−Ls/2+T Ls/2 0 · · · · · · · · · 0 1





(70)

P−1 1
Ddwf (m)

Ddwf (1)P = L−1(m)diag(Dov(m), 1, · · · , 1)L(1) (71)

P−1 1
Ddwf (m)

Ddwf (1)P =





D−1
ov (m) 0 0 · · · · · · · · · 0

(1−m)T−Ls/2+1 1
T−Ls/2+T Ls/2 D−1

ov (m) 1 0 0 · · · · · · 0
(1−m)T−Ls/2+2 1

T−Ls/2+T Ls/2 D−1
ov (m) 0 1 0 · · · · · · 0

...
...

. . . . . . . . . · · ·
...

(1−m) 1
T−Ls/2+T Ls/2 D−1

ov (m) 0 · · · · · · 1 0 · · ·
...

...
. . . . . . . . . . . .

...
(1−m)TLs/2−1 1

T−Ls/2+T Ls/2 D−1
ov (m) 0 · · · · · · · · · 0 1





(72)

εLs =
T−Ls − 1
T−Ls + 1

=
(1 + HT )Ls − (1−HT )Ls

(1 + HT )Ls + (1−HT )Ls
(73)

[1] R. G. Edwards and U. M. Heller, Phys. Rev. D63, 094505 (2001), arXiv:hep-lat/0005002.
[2] The 0 index refers to the s index of the 5th dimension
[3] see axial current and hermiticity notes



Locality of the 4D action
4D

 c
ou

pl
in

gs

distance

Localization: ~ 1.5a

a=0.125fm



Locality of the 4D action
4D

 c
ou

pl
in

gs

distance

Localization: ~ 1.3a

a=0.09fm



a=0.125fm

The DWF quark masses



0 5 10 15 20
−1

0

1

2

3

4

5

6

7

t

C(
t)

0 5 10 15 20
−2

0

2

4

6

8

t

C(
t)

5 10 15 20
−0.05

0.00

0.05

0.10

0.15

0.20

t

C(
t)

0 5 10 15 20
−2

0

2

4

6

8

t

C(
t)

6 8 10 12 14 16 18 20
−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

t

C(
t)

0 5 10 15 20
0

2

4

6

8

t

C(
t)

IsoVector scalar correlator

m=0.05

m=0.01 m=0.02

m=0.03

χPT 
calculation:
Prelovsek 
LAT 05



FK/Fπ 
calculations of the same quantity by MILC [1, 2]. In the subsequent sections we are going to

discuss the details of our calculation and present our result for the ratio of the kaon to pion

decay constants fK/fπ extrapolated to the physical point together with our best estimate

of systematic and statistical errors involved.

II. CHIRAL PERTURBATION THEORY

In SU(3) chiral perturbation theory (ChiPT) Gasser and Leutwyler [27–29] showed that

the ratio of the kaon to pion decay constants is

fK

fπ
= 1 +

5

4
lπ(µ)− 1

2
lK(µ)− 3

4
lη(µ) +

8

f 2

(
m2

K −m2
π

)
L5(µ) (1)

where f is the pseudoscalar decay constant at the chiral limit, mK the kaon mass, mπ the

pion mass, and

li(µ) =
1

16π2

m2
i

f 2
log

(
m2

i

µ2

)
, (2)

with the index i running over the pseudoscalar states (π,K and η), and µ being the ChiPT

cut off scale. Finally L5(µ) is a scale dependent Gasser - Leutwyler low energy constant.

In our lattice calculation we have not computed the mass of the η meson since it involves

hard to compute disconnected diagrams. For that reason we replace mη by the Gell-Mann-

Okubo formula

m2
η =

4

3
m2

K −
1

3
m2

π . (3)

This is valid to order of ChiPT at which we are working. In addition we shift the scale µ to

the value of the pion decay constant at the physical point. This amounts to a redefinition

of the low energy constant L5 according to

L5(f
phys
π ) = L5(µ)− 3

16

1

16π2
log

(
f 2

π,phys

µ2

)
, (4)

and modifications to the higher order corrections to Eq. 1.

Finally, we replace the ratios (mi/fπ,phys)2 by the lattice computed value (mi/fπ)2. Again,

this is consistent to the order of ChiPT at which we are working. Hence, the final expression

to which we fit our lattice data is

fK

fπ
= 1 +

5

4

1

16π2

m2
π

f 2
π

log

(
m2

π

f 2
π

)
− 1

2

1

16π2

m2
K

f 2
π

log

(
m2

K

f 2
π

)

− 3

4

1

16π2

4
3m

2
K − 1

3m
2
π

f 2
π

log

( 4
3m

2
K − 1

3m
2
π

f 2
π

)
+

3

f 2
π

(
m2

K −m2
π

)
L5(fπ,phys) (5)
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With these values we can evaluate the ratio of the decay constants at the physical point

using the physical values for the pseudoscalar masses and the pion decay constant [38],

fπ = 130.7 MeV

mπ = 137.273 MeV

mK = 495.663 MeV. (12)

The resulting value for the ratio is

fK

fπ
= 1.210(10)(05) (13)

where the first error is statistical and the second is an estimation of the systematic error

due to the ignored higher order terms in the chiral expansion. The above result has also

an additional systematic error due to the lattice spacing which we expect to be O(a2). In

principle one can reduce this error by fitting to the appropriate chiral perturbation theory

formulas that include the O(g2a2) effects due to flavor symmetry breaking in the sea quark

sector [21]. Our data though fit very well to the continuum ChiPT formulas hence we do

not expect that the use of the Bar el.al.results would significantly improve our calculation.

Our final result is almost identical with the MILC number [1]

fK

fπ

∣∣∣∣
MILC

= 1.210(4)(13) (14)

where the first error is statistical and the second is the total systematic error MILC esti-

mated. Since our valence quarks are domain wall fermions, as opposed to the Kogut-Susskind

used by MILC, the discretization error should be very different. Hence, the agreement we

get in our results is an indication that these systematic errors are rather small. They are

certainly smaller than our statistical errors. KNO: More recent MILC calculations [2] has

a number of 1.198(3)(+16)(-05). They used finer lattices and a second run with lighter

strange quark mass at a=0.125fm. We might want to comment on this latest results. Also

we might want to think and comment on how the miss-tuned strange quark mass affects our

result. The correct strange quark mass is somewhat lighter that 0.05 thus MILC started

new runs at strange mass 0.03. This might also be the reason we cannot get the physical

MK accurately from our data. We get it heavier...

It is also interesting to note that our result is in agreement with the experimental number,

fK

fπ

∣∣∣∣
exp.

= 1.223(12) , (15)

6

With these values we can evaluate the ratio of the decay constants at the physical point

using the physical values for the pseudoscalar masses and the pion decay constant [38],

fπ = 130.7 MeV

mπ = 137.273 MeV

mK = 495.663 MeV. (12)

The resulting value for the ratio is

fK

fπ
= 1.210(10)(05) (13)

where the first error is statistical and the second is an estimation of the systematic error

due to the ignored higher order terms in the chiral expansion. The above result has also

an additional systematic error due to the lattice spacing which we expect to be O(a2). In

principle one can reduce this error by fitting to the appropriate chiral perturbation theory

formulas that include the O(g2a2) effects due to flavor symmetry breaking in the sea quark

sector [21]. Our data though fit very well to the continuum ChiPT formulas hence we do

not expect that the use of the Bar el.al.results would significantly improve our calculation.

Our final result is almost identical with the MILC number [1]

fK

fπ

∣∣∣∣
MILC

= 1.210(4)(13) (14)

where the first error is statistical and the second is the total systematic error MILC esti-

mated. Since our valence quarks are domain wall fermions, as opposed to the Kogut-Susskind

used by MILC, the discretization error should be very different. Hence, the agreement we

get in our results is an indication that these systematic errors are rather small. They are

certainly smaller than our statistical errors. KNO: More recent MILC calculations [2] has

a number of 1.198(3)(+16)(-05). They used finer lattices and a second run with lighter

strange quark mass at a=0.125fm. We might want to comment on this latest results. Also

we might want to think and comment on how the miss-tuned strange quark mass affects our

result. The correct strange quark mass is somewhat lighter that 0.05 thus MILC started

new runs at strange mass 0.03. This might also be the reason we cannot get the physical

MK accurately from our data. We get it heavier...

It is also interesting to note that our result is in agreement with the experimental number,

fK

fπ

∣∣∣∣
exp.

= 1.223(12) , (15)

6

Gasser-Leutwyler:

Result comparable with MILC

With these values we can evaluate the ratio of the decay constants at the physical point

using the physical values for the pseudoscalar masses and the pion decay constant [38],

fπ = 130.7 MeV

mπ = 137.273 MeV

mK = 495.663 MeV. (12)

The resulting value for the ratio is

fK

fπ
= 1.210(10)(05) (13)

where the first error is statistical and the second is an estimation of the systematic error

due to the ignored higher order terms in the chiral expansion. The above result has also

an additional systematic error due to the lattice spacing which we expect to be O(a2). In

principle one can reduce this error by fitting to the appropriate chiral perturbation theory

formulas that include the O(g2a2) effects due to flavor symmetry breaking in the sea quark

sector [21]. Our data though fit very well to the continuum ChiPT formulas hence we do

not expect that the use of the Bar el.al.results would significantly improve our calculation.

Our final result is almost identical with the MILC number [1]

fK

fπ

∣∣∣∣
MILC

= 1.210(4)(13) (14)

where the first error is statistical and the second is the total systematic error MILC esti-

mated. Since our valence quarks are domain wall fermions, as opposed to the Kogut-Susskind

used by MILC, the discretization error should be very different. Hence, the agreement we

get in our results is an indication that these systematic errors are rather small. They are

certainly smaller than our statistical errors. KNO: More recent MILC calculations [2] has

a number of 1.198(3)(+16)(-05). They used finer lattices and a second run with lighter

strange quark mass at a=0.125fm. We might want to comment on this latest results. Also

we might want to think and comment on how the miss-tuned strange quark mass affects our

result. The correct strange quark mass is somewhat lighter that 0.05 thus MILC started

new runs at strange mass 0.03. This might also be the reason we cannot get the physical

MK accurately from our data. We get it heavier...

It is also interesting to note that our result is in agreement with the experimental number,

fK

fπ

∣∣∣∣
exp.

= 1.223(12) , (15)

6

Beane, Bedaque, KO, Savage in preparation 

Need much higher precision to see effects of Mixed  χPT Baer et.al.’05 



Strong Isospin Breaking

280 300 320 340 360

 m
!
sea  (MeV)

0

10

20

30

40

50

60

70

"
 M

p
  

 (
M

eV
)

"M
p
(V

a
,V

b
,V

c
;V

1
)  a,b,c=1,2

"M
p
(V

a
,V

b
,V

c
;V

1
)  a,b,c=1,3

"M
p
(V

a
,V

b
,V

c
;V

2
)  a,b,c=1,2

FIG. 4: The partially-quenched proton mass differences (in MeV) calculated from the bml = 0.007
and 0.010 MILC lattices plotted vs the pion mass composed of sea quarks. Various data have been

displaced horizontally by small amounts for display purposes. A lattice spacing of b = 0.125 fm has
been used.

Extraction Mn − Mp|d−u (MeV) at mphys.
π

LO O(mq) 1.96 ± 0.92 ± 0.37

NLO O(m3/2
q ) 2.26 ± 0.57 ± 0.42

TABLE IV: The neutron-proton mass-splitting at the physical value of the pion mass, mphys.
π =

140 MeV, extracted from this partially-quenched lattice calculation, using the parameters shown
in Table III. The lattice spacing used to convert between lattice units and physical units is b =

0.125 fm. The first error is statistical while the second error is due to the uncertainty in the ratio
of quark masses, mu/md, in the MILC calculation [1].

estimate how big the corrections should be. The lattice spacing is introduced into the
mixed-action theory by extending the SU(2)L ⊗ SU(2)R lie-algebra to a graded lie-algebra
that makes the distinction between sea and valence quarks explicit. The lattice spacing is
incorporated by a spurion field with the appropriate transformation properties under the
graded group, e.g. see Ref. [34–37]. There is a leading-order contribution at O(a2 m0

q) to
the nucleon mass (where we are assuming that the exponentially suppressed contribution
at O(a m0

q) from the finite L5 is numerically insignificant). However, such terms do not
contribute to the mass differences between the proton states that we have used to extract
the parameters. Finite lattice spacing contributions to the nucleon mass that depend upon

10

Quantity Mass (Difference) (l.u.) Mass (Difference) (MeV) Fitting Range

mπ(V1, V1;V1) 0.1864 ± 0.0011 294.2 ± 1.7 5 → 15

mπ(V1, V2;V1) 0.2066 ± 0.0010 326.2 ± 1.6 5 → 15

mπ(V2, V2;V1) 0.22473 ± 0.00091 354.4 ± 1.4 5 → 15

mπ(V1, V3;V1) 0.1929 ± 0.0012 304.5 ± 1.9 5 → 15

mπ(V3, V3;V1) 0.1996 ± 0.0011 315.1 ± 1.8 5 → 15

mπ(V1, V1;V2) 0.1844 ± 0.0013 291.0 ± 2.1 5 → 15

mπ(V1, V2;V2) 0.2050 ± 0.0012 323.7 ± 1.0 5 → 15

mπ(V2, V2;V2) 0.2236 ± 0.0011 352.9 ± 1.8 5 → 15

∆Mp(V1, V1, V2;V1) 0.0163 ± 0.0019 25.7 ± 3.0 5 → 12

∆Mp(V2, V2, V1;V1) 0.0209 ± 0.0029 32.9 ± 4.7 5 → 12

∆Mp(V2, V2, V2;V1) 0.0353 ± 0.0041 55.8 ± 6.5 5 → 12

∆Mp(V1, V1, V3;V1) 0.0049 ± 0.0010 7.7 ± 1.6 5 → 11

∆Mp(V3, V3, V1;V1) 0.0061 ± 0.0016 9.7 ± 2.5 5 → 11

∆Mp(V3, V3, V3;V1) 0.0109 ± 0.0024 17.2 ± 3.8 5 → 11

∆Mp(V1, V1, V1;V2) −0.0309 ± 0.0038 −48.8 ± 6.0 4 → 11

∆Mp(V1, V1, V2;V2) −0.0161 ± 0.0022 −25.5 ± 3.5 4 → 11

∆Mp(V2, V2, V1;V2) −0.0137 ± 0.0016 −21.6 ± 2.6 5 → 12

TABLE II: The pion masses and proton mass differences calculated on the bml = 0.007 and
bml = 0.010 MILC lattices. The notation of valence and sea quarks, V1,2,3, is defined in the text.

A lattice spacing of b = 0.125 fm has been used.

Extraction 1
3

(

2α − β
)

(l.u.) α + β (l.u.) g1 |g∆N | χ2/dof

LO O(mq) 0.198 ± 0.093 2.07 ± 0.08 −− −− 0.56

NLO O(m3/2
q ) 0.229 ± 0.058 3.4 ± 1.1 −0.10 ± 0.35 0.60 ± 0.66 0.21

TABLE III: Parameter Table. The values of the parameters in the partially-quenched chiral La-
grangian as determined by a χ2-minimization fit of the theoretical proton mass differences given

in Appendix A, to the lattice data given in Table II. The isospin-conserving combination of coun-
terterms, α + β, is renormalization-scale dependent. We have renormalized at µ = 1 GeV.

expansion. It is reassuring that the predicted neutron-proton mass difference is relatively
insensitive to the order in the chiral expansion, as shown in Table IV. Both the tree-level
and the one-loop extraction of the neutron-proton mass differences are consistent with the
“experimental” value of Mn − Mp|d−u = 2.05 ± 0.30 MeV.

An interesting observation can be made by comparing the proton mass differences on
the two different lattice sets, as shown in Table II and displayed in fig. 4. Within errors,
the magnitude of the mass differences are independent of the value of the sea-quark mass.
This is consistent with the leading order chiral expansions given eq. (1) and in Appendix A.
Higher order contributions to these mass differences in the chiral expansion, which give rise
to deviations from these equalities, will be become more visible with increased statistics.

There will be finite lattice spacing contributions to the parameters that we have extracted
in this work. The recent developments in the inclusion of finite-lattice spacing effects in
mixed-action theories in χPT allow us to determine where such corrections enter and to
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FIG. 4: The partially-quenched proton mass differences (in MeV) calculated from the bml = 0.007
and 0.010 MILC lattices plotted vs the pion mass composed of sea quarks. Various data have been

displaced horizontally by small amounts for display purposes. A lattice spacing of b = 0.125 fm has
been used.

Extraction Mn − Mp|d−u (MeV) at mphys.
π

LO O(mq) 1.96 ± 0.92 ± 0.37

NLO O(m3/2
q ) 2.26 ± 0.57 ± 0.42

TABLE IV: The neutron-proton mass-splitting at the physical value of the pion mass, mphys.
π =

140 MeV, extracted from this partially-quenched lattice calculation, using the parameters shown
in Table III. The lattice spacing used to convert between lattice units and physical units is b =

0.125 fm. The first error is statistical while the second error is due to the uncertainty in the ratio
of quark masses, mu/md, in the MILC calculation [1].

estimate how big the corrections should be. The lattice spacing is introduced into the
mixed-action theory by extending the SU(2)L ⊗ SU(2)R lie-algebra to a graded lie-algebra
that makes the distinction between sea and valence quarks explicit. The lattice spacing is
incorporated by a spurion field with the appropriate transformation properties under the
graded group, e.g. see Ref. [34–37]. There is a leading-order contribution at O(a2 m0

q) to
the nucleon mass (where we are assuming that the exponentially suppressed contribution
at O(a m0

q) from the finite L5 is numerically insignificant). However, such terms do not
contribute to the mass differences between the proton states that we have used to extract
the parameters. Finite lattice spacing contributions to the nucleon mass that depend upon
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as required. The expansion of the neutron mass can be recovered from the expansion of the
proton mass by interchanging the up and down quark masses, u ↔ d. At the order to which
we are working it is most convenient to replace the explicit quark masses in the expression
for the proton mass with the leading order expression for the pion mass to yield

Mp = M0 +
(

α + β + 2σ
)

m2
π −

1

3

(

2α − β
)

(

1 − η

1 + η

)

m2
π

−
1

8πf 2

[

3

2
g2

Am3
π +

4g2
∆N

3π
Fπ

]

, (5)

where η = mu/md. The neutron mass is recovered by making the replacement η → 1/η, and
consequently

Mn − Mp|d−u =
2

3

(

2α − β
)

(

1 − η

1 + η

)

m2
π . (6)

The one-loop contributions at O(m3/2
q ) cancel in the mass-difference, as the pions are de-

generate up to O(m2
q). The analogous expressions for the partially-quenched proton masses

can be found in Appendix A.

III. DETAILS OF THE LATTICE CALCULATION AND ANALYSIS

Our computation uses the mixed-action lattice QCD scheme developed by LHPC [17, 18]
using domain-wall valence quarks from a smeared-source on Nf = 2+1 asqtad-improved [19,
20] MILC configurations generated with rooted 1 staggered sea quarks [26] that are HYP-
smeared [27–30]. In the generation of the MILC configurations, the strange-quark mass
was fixed near its physical value, bms = 0.050, (where b = 0.125 fm is the lattice spacing)
determined by the mass of hadrons containing strange quarks. The two light quarks in
the configurations are degenerate (isospin-symmetric). The domain-wall height is m = 1.7
and the extent of the extra dimension is L5 = 16. The MILC lattices were “chopped”
using a Dirichlet boundary condition from 64 to 32 time-slices to save time in propagator
generation. In order to extract the terms in the mass expansion, we computed a number
of sets of propagators corresponding to different valence quark masses, as shown in Table I.
On 468 bml = 0.007 (denoted by V1) lattices we have computed three sets corresponding
to the QCD point with a valence-quark mass of bmdwf = 0.0081 (V1), three sets on 367
bml = 0.007 lattices with a valence quark mass of bmdwf = 0.0138 (denoted by V2), and two
sets with a valence quark mass bmdwf = 0.0100 (denoted by V3). On 658 of the bml = 0.010
(V2) lattices we have computed three sets at the QCD point with a valence-quark mass of
bmdwf = 0.0138 (V2) and one set with a valence quark mass of bmdwf = 0.0081 (V1). The
parameters used to generate the QCD-point light-quark propagators have been “matched”
to those used to generate the MILC configurations so that the mass of the pion computed
with the domain-wall propagators is equal (to few-percent precision) to that of the lightest
staggered pion computed with the same parameters as the gauge configurations [26]. The
lattice calculations were performed with the Chroma software suite [31, 32] on the high-
performance computing systems at the Jefferson Laboratory (JLab).

1 For recent discussions of the “legality” of the mixed-action and rooting procedures, see Ref. [21–25].
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MILC: η =mu/md= 0.43(1)(8)

Beane, KO, Savage hep-lat/0605015 

Exp. value: Mn - Mp = 1.2933317(5) MeV Mn - Mp = 2.05(30) MeV
minus EM part
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Nucleon Axial charge

• Non-perturbatively renormalized

• gA(mπ=140MeV) =  1.22(8)

3
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FIG. 1: Nucleon axial charge gA as a function of the pion
mass. Lattice data are denoted by squares (smaller volume)
and a triangle (larger volume), the lowest smaller volume
point is displaced slightly to the right for clarity, and ex-
periment is denoted by the circle. The heavy solid line and
shaded error band show the χPT fit to the finite volume data
evaluated in the infinite volume limit, and the lines below it
show the behavior of this chiral fit in boxes of finite volume
L3, as L is reduced to 3.5, 2.5, and 1.6 fm respectively.

tween two nucleons, two Deltas, or a nucleon and Delta,
respectively), and a counterterm C.

Figure 1 shows the lattice data and our fit to it using
finite volume χPT. The χPT function was fit to each
data point at the corresponding mass and finite volume,
and the parameters of the fit were then used to determine
the infinite volume axial charge. In the absence of lattice
calculations of gA at still lower pion masses, it is not
presently possible to do a complete extrapolation from
lattice measurements alone. Hence, following Ref. [20],
we performed a constrained fit and the heavy solid curve
is determined by setting fπ, m∆ −mN , and gN∆ to their
physical values[20] and performing a least squares fit for
gA, g∆∆, and C. The error band arising from this three
parameter fit is shown in Fig. 1 and the resulting value
for the axial charge at the physical pion mass is gA(mπ =
140 MeV) = 1.212±0.084. Given the smooth behavior of
the chiral fit and the small magnitude of the chiral logs,
it is clear that the extrapolation for the axial charge is
quite benign, and that the lattice data is extrapolating
convincingly towards experiment.

Although there has been concern that gA is particu-
larly sensitive to finite volume effects[6, 7, 22], Fig. 1
shows these effects are well under control and introduce
negligible errors for our volumes. The light curves show
the behavior expected from χPT in volumes L3 with L of
3.5, 2.5, and 1.6 fm. Note that at the lightest mass, our
3.5 and 2.5 fm results are statistically indistinguishable,
consistent with the χPT change of less than 1 %, and
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FIG. 2: Comparison of all full QCD calculations of gA, as
described in the text. The solid line and error band denote
the infinite volume χPT fit of Fig. 1 and its continuation to
higher masses is indicated by the dotted line.

that the corrections applied in correcting our data from
2.5 or 3.5 fm to infinity in the χPT fit are quite small. At
heavier masses, although the truncated χPT expansion is
not quantitatively reliable, the finite volume effects are
physically suppressed. The order of magnitude of the
corrections from 1.6 to 2.5 fm is also consistent with the
fact that quenched calculations[6] have shown that in-
creasing the box length from 1.2 fm to 2.4 fm increases
gA by the order of 10% for pion masses ranging from 550
to 870 MeV, and unquenched calculations for 770 MeV
pions[7] have shown that increasing L from 1.1 to 2.2 fm
increases gA by 20%.

In addition to the statistical error arising from fitting
the parameters gA, g∆∆, and C, several systematic errors
may be estimated. The three constrained parameters can
be calculated directly on the lattice and the linear re-
sponse of our chiral fit to varying each of of them shows
very weak dependence. Calculation of fπ on our lattices
yields 92.4 MeV ± 3%, corresponding to an error in gA

of 0.10%, and a rough calculation of m∆ − mN , (which
can be improved) with 18% uncertainty corresponds to
an error of 0.29%. Although we have not yet calculated
gN∆, it should be calculable to 20%, corresponding to
an error in gA of 0.13 %. Thus the total error from the
constrained parameters is much less than a percent. The
error in the lattice scale, which can shift all masses by 2%,
will induce a negligible effect since the curve in Fig. 1 is so
flat. An alternative lattice renormalzation method based
on calculating the ratio of the axial and vector charges,
which should have the same renormalization constant in
the chiral limit, yields discrepancies less than 2% for the
heaviest masses and statistically indistinguishable results
at lighter masses, suggesting that the renormalization er-
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Quark momentum fraction ratio 〈x〉u−d
q /〈x〉u−d

∆q
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• Approach the chiral limit: Resolve the puzzle!

• Few moments of GPDs  computed with 
dynamical fermions                                                    
LHPC in preparation / QCDSF clover/Wilson 

• Precision calculation of axial and tensor 
couplings

• Wilson fermions? (improved dynamical algorithms)

Future


